Advertisements
Advertisements
Question
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k
Solution
p(x) = kx3 – 2x2 + 25x – 26
When it is divided by x – 1
P(1) = 0
k(1)3 – 2(1)2 + 25(1) – 26 = 0
k – 2 + 25 – 26 = 0
k + 25 – 28 = 0
k – 3 = 0
k = 3
The value of k = 3
APPEARS IN
RELATED QUESTIONS
Find the value of ‘k’ if (x – 2) is a factor of x3 + 2x2 – kx + 10. Hence determine whether (x + 5) is also a factor.
Using the factor Theorem, show that:
2x + 7 is a factor 2x3 + 5x2 − 11x – 14. Hence, factorise the given expression completely.
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Use the factor theorem to factorise completely x3 + x2 - 4x - 4.
If x – 2 is a factor of 2x3 - x2 - px - 2.
with the value of p, factorize the above expression completely.
Using factor theorem, show that (x - 3) is a factor of x3 - 7x2 + 15x - 9, Hence, factorise the given expression completely.
Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.
x – 1 is a factor of 8x2 – 7x + m; the value of m is ______.