Advertisements
Advertisements
Question
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Solution
Let f(x) = (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15
It is given that (3x + 5) is a factor of f(x).
∴ Remainder = 0
–125a + 125 + 75a + 75 + 90a + 45 – 405 = 0
40a – 160 = 0
40a = 160
a = 4
∴ f(x) = (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15
= 3x3 + 5x2 – 9x – 15
x2 – 3
3x3 + 5x2
– 9x – 15
– 9x – 15
0
∴ 3x3 + 5x2 – 9x – 15 = (3x + 5)(x2 – 3)
=
APPEARS IN
RELATED QUESTIONS
Show that x – 2 is a factor of 5x2 + 15x – 50.
Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
Show that 2x + 7 is a factor of 2x3 + 5x2 - 11 x - 14. Hence factorise the given expression completely, using the factor theorem.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15