English

(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely. - Mathematics

Advertisements
Advertisements

Question

(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.

Sum

Solution

Let f(x) = (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15

It is given that (3x + 5) is a factor of f(x). 

∴ Remainder = 0 

f(-53)=0 

(a-1)(-53)3+(a+1)(-53)2-(2a+1)(-53)-15=0

(a-1)(-12527)+(a+1)(a+1)(259)-(2a+1)(-53)-15=0 

-125(a-1)+75(a+1)+45(2a+1)-40527=0 

–125a + 125 + 75a + 75 + 90a + 45 – 405 = 0

40a – 160 = 0 

40a = 160 

a = 4 

∴ f(x) = (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15 

= 3x3 + 5x2 – 9x – 15

               x2 – 3
3x+5)3x3+5x2-9x-15¯
             3x3 + 5x2                    
                               – 9x – 15
                               – 9x – 15   
                                      0

∴ 3x3 + 5x2 – 9x – 15 = (3x + 5)(x2 – 3) 

= (3x+5)(x+3)(x-3)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (C) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (C) | Q 12 | Page 112

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.