Advertisements
Advertisements
Question
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
Solution
p(x) = 2x3 – 5x2 – 28x + 15
x – 5 is a factor
p(5) = 2(5)3 – 5(5)2 – 28(5) + 15
= 250 – 125 – 140 + 15
= 265 – 265
= 0
∴ (x – 5) is a factor of p(x)
APPEARS IN
RELATED QUESTIONS
Show that 3x + 2 is a factor of 3x2 – x – 2.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Prove by factor theorem that
(x - 3) is a factor of 5x2 - 21 x +18
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
Use the factor theorem to factorise completely x3 + x2 - 4x - 4.
Find the value of a , if (x - a) is a factor of x3 - a2x + x + 2.
Find the value of the constants a and b, if (x – 2) and (x + 3) are both factors of the expression x3 + ax2 + bx – 12.
If two polynomials 2x3 + ax2 + 4x – 12 and x3 + x2 – 2x + a leave the same remainder when divided by (x – 3), find the value of a and also find the remainder.
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.