English

Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely. - Mathematics

Advertisements
Advertisements

Question

Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.

Sum

Solution

Let f(x)= x3 – 2x2 – 9x + 18 

x – 2 = 0 `\implies` x = 2 

∴ Remainder = f(2) 

= (2)3 – 2(2)2 – 9(2) + 18    

= 8 – 8 – 18 +18 

= 0 

Hence, (x – 2) is a factor of f(x). 

Now, we have: 

             x2 – 9
`x - 2")"overline(x^3 - 2x^2 - 9x + 18)`
           x3 – 2x2                            
           –     +                       
                           – 9x + 18
                           – 9x + 18      
                           +     –        
                                  0      
∴ x3 – 2x2 – 9x + 18 = (x – 2)(x2 – 9)

= (x – 2)(x + 3)(x – 3)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (B) [Page 111]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (B) | Q 1.1 | Page 111

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×