Advertisements
Advertisements
प्रश्न
Find without division, the remainder in the following:
2x3 - 3x2 + 6x - 4 is divisible by (2x-3)
उत्तर
2x3 - 3x2 + 6x - 4 is divisible by (2x-3)
Putting 2x - 3 = 0, we get : x = `3/2`
Substituting this value of x in the equation, we get
`2 xx 3/2 xx 3/2 xx 3/2 - 3 xx 3/2 xx 3/2 + 6 xx 3/2 - 4`
`= 27/4 - 27/4 + 9 - 4`
= 5
APPEARS IN
संबंधित प्रश्न
Using the Remainder Theorem, factorise the following completely:
x3 + x2 – 4x – 4
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Given f(x) = ax2 + bx + 2 and g(x) = bx2 + ax + 1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x) + g(x) + 4x2 + 7x.
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
What must be subtracted from the polynomial x3 + x2 – 2x + 1, so that the result is exactly divisible by (x – 3)?