Advertisements
Advertisements
प्रश्न
Find without division, the remainder in the following :
x3 + 8x2 + 7x- 11 is divisible by (x+4)
उत्तर
x3 + 8x2 + 7x- 11 is divisible by (x+4)
Putting x + 4 = 0, we get : x = -4
Substituting this value of x in the equation, we get
( -4) × (-4) × (-4) + 8 × ( -4 ) × ( -4) + 7× ( -4) - 11
= - 64 + 128 - 28 - 11
= 25
APPEARS IN
संबंधित प्रश्न
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
The polynomials ax3 + 3x2 – 3 and 2x3 – 5x + a, when divided by x – 4, leave the same remainder in each case. Find the value of a.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(x2 − 7x + 9) ; (x + 1)
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 3x3 – 7x2 + 4x + 11
If x51 + 51 is divided by x + 1, the remainder is ______.
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
The remainder, when x3 – x2 + x – 1 is divided by x + 1, is ______.