Advertisements
Advertisements
प्रश्न
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
उत्तर
Let f(x) = 2x3 – 7x2 + ax – 6
x – 2 = 0 `\implies` x = 2
When f(x) is divided by (x – 2), remainder = f(2)
∴ f(2) = 2(2)3 – 7(2)2 + a(2) – 6
= 16 – 28 + 2a – 6
= 2a – 18
Let g(x) = x3 – 8x2 + (2a + 1)x – 16
When g(x) is divided by (x – 2), remainder = g(2)
∴ g(2) = (2)3 – 8(2)2 + (2a + 1)(2) – 16
= 8 – 32 + 4a + 2 – 16
= 4a – 38
By the given condition, we have:
f(2) = g(2)
2a – 18 = 4a – 38
4a – 2a = 38 – 18
2a = 20
a = 10
Thus, the value of a is 10.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
If x51 + 51 is divided by x + 1, then the remainder is
For what value of m is x3 – 2mx2 + 16 divisible by x + 2?