Advertisements
Advertisements
प्रश्न
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
उत्तर
Let the number to be subtracted be k and the resulting polynomial be f(x).
So, f(x) = x3 + 3x2 – 8x + 14 – k
It is given that when f(x) is divided by (x – 2), the remainder is 10.
∴ f(2) = 10
(2)3 + 3(2)2 – 8(2) + 14 – k = 10
8 + 12 – 16 + 14 – k = 10
18 – k = 10
– k = 10 – 18 = – 8
k = 8
Thus, the required number is 8.
APPEARS IN
संबंधित प्रश्न
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 5x2 – 1x + 4
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 2x3 – 7x2 + 3
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
Using the Remainder Theorem, factorise completely the following polynomial:
3x2 + 2x2 – 19x + 6
Check whether p(x) is a multiple of g(x) or not
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
If x51 + 51 is divided by x + 1, the remainder is ______.