Advertisements
Advertisements
प्रश्न
Check whether p(x) is a multiple of g(x) or not
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
उत्तर
p(x) = x3 – 5x2 + 4x – 3
p(2) = (2)3 – 5(2)2 + 4(2) – 3
= 8 – 5(4) + 8 – 3
= 8 – 20 + 8 – 3
= 16 – 23
= – 7
p(2) ≠ 0
∴ p(x) is not a multiple of g(x)
APPEARS IN
संबंधित प्रश्न
Using the Remainder Theorem, factorise the following completely:
x3 + x2 – 4x – 4
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
The polynomial f(x) = ax4 + x3 + bx2 - 4x + c has (x + 1), (x-2) and (2x - 1) as its factors. Find the values of a,b,c, and remaining factor.
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).
Find the remainder when 3x3 – 4x2 + 7x – 5 is divided by (x + 3)
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
What must be subtracted from the polynomial x3 + x2 – 2x + 1, so that the result is exactly divisible by (x – 3)?
If x25 + x24 is divided by (x + 1), the result is ______.