Advertisements
Advertisements
प्रश्न
When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).
उत्तर
When f(x) is divided by (x – 1),
Remainder = 5
Let x – 1 = 0
⇒ x = 1
∴ f(1) = 5
When divided by (x – 2),
Remainder = 7
Let x – 2 = 0
⇒ x = 2
∴ f(2) = 7
Let f(x) = (x – 1)(x – 2)q(x) + ax + b
Where q(x) is the quotient and ax + b is remainder
Putting x = 1, we get:
f(1) = (1 – 1)(1 – 2)q(1) + a x 1 + b
= 0 + a + b
= a + b
and x = 2, then
f(2) = (2 – 1)(2 – 2)q(2) + a x 2 + b
= 0 + 2a + b
= 2a + b
∴ a + b = 5 ....(i)
2a + b = 7 ....(ii)
Subtracting, we get
–a = – 2
⇒ a = 2
Substituting the value of a in (5)
2 + b = 5
⇒ b = 5 – 2 = 3
∴ a = 2, b = 3
∴ Remainder = ax + b
= 2x + 3.
APPEARS IN
संबंधित प्रश्न
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
When x3 + 3x2 – mx + 4 is divided by x – 2, the remainder is m + 3. Find the value of m.
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(x2 − 7x + 9) ; (x + 1)
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x - 4
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Check whether p(x) is a multiple of g(x) or not
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.