Advertisements
Advertisements
प्रश्न
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
उत्तर
Given f(x ) = (x -1 )(x - 2)+(-2x + 5)
= (x2 - 3x + 2) + (-2x + 5)
f(x) = x2 - 5x + 7
Substituting = 1
f(x) = 1 - 5 + 7 =3
when f(x) is divided by (x -1) , remainder = 3
substituting x = 2
f(x) = 4 - 10 + 7 = 1
when f(x) is divided by (x - 2), remainder = 1
`("x"^2 - 5"x" + 7)/("x"^2 - 3"x" + 2) = 1 (-2"x" + 5)/(("x" - 1)("x" - 2))`
and
when f(x) is divided by (x - 1)(x - 2), remainder = (-2x + 5).
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x+1.
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Use remainder theorem and find the remainder when the polynomial g(x) = x3 + x2 – 2x + 1 is divided by x – 3.
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
Using the Remainder Theorem, factorise completely the following polynomial:
3x2 + 2x2 – 19x + 6
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
For what value of m is x3 – 2mx2 + 16 divisible by x + 2?