Advertisements
Advertisements
प्रश्न
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
पर्याय
4
– 4
3
– 3
उत्तर
f(x) = 4x2 – 3kx + 5
g(x) = x + 2
Remainder = – 3
Let x + 2 = 0, then x = – 2
Now remainder will be
f(–2) = 4(–2)2 – 3k(–2) + 5
= 16 + 6k + 5
= 21 + 6k
∴ 21 + 6k = –3
⇒ 6k = –3 – 21
= –24
⇒ k = `(-24)/(6)` =–4
∴ k = –4.
APPEARS IN
संबंधित प्रश्न
What must be subtracted from 16x3 – 8x2 + 4x + 7 so that the resulting expression has 2x + 1 as a factor?
Using the Remainder and Factor Theorem, factorise the following polynomial:
`x^3 + 10x^2 - 37x + 26`
Find the remainder when x3 + 3x2 – 12x + 4 is divided by x – 2.
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Find the values of a and b when the polynomial f(x)= ax3 + 3x2 +bx -3 is exactly divisible by (2x+3) and leaves a remainder -3 when divided by (x+2).
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
If x51 + 51 is divided by x + 1, the remainder is ______.
By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: x4 + 1; x – 1
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2