मराठी

If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is - Mathematics

Advertisements
Advertisements

प्रश्न

If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is

पर्याय

  • 2

  • – 2

  •  – 3

  • 3

MCQ

उत्तर

f(x) = 2x3 + 6x2 – (2k – 7)x + 5
g(x) = x + 3
Remainder = k – 1
If x + 3 = 0,
then x = –3
∴ Remainder will be
f(–3) = 2(–3)2 + 6(–3)2 – (2k – 7)(–3) + 5
= –54 + 54 + 3(2k – 7) + 5
= –54 + 54 + 6k – 21 + 5
= 6k – 16
∴ 6k – 16 = k – 1
6k – k = –1 + 16
⇒ 5k – 15
k = `(15)/(5)` = 3
∴ k = 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Factorization - Multiple Choice Question

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×