Advertisements
Advertisements
प्रश्न
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 1
उत्तर
By remainder theorem we know that when a polynomial f(x) is divided by x – a, then the remainder is f(a).
Let f(x) = 2x3 + 3x2 – 5x – 6
f(–1) = 2(–1)3 + 3(–1)2 – 5(–1) – 6
= –2 + 3 + 5 – 6
= 0
Thus, (x + 1) is a factor of the polynomial f(x).
APPEARS IN
संबंधित प्रश्न
The polynomials ax3 + 3x2 – 3 and 2x3 – 5x + a, when divided by x – 4, leave the same remainder in each case. Find the value of a.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(x2 − 7x + 9) ; (x + 1)
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
The polynomial f(x) = ax4 + x3 + bx2 - 4x + c has (x + 1), (x-2) and (2x - 1) as its factors. Find the values of a,b,c, and remaining factor.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x - 4
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 2x3 – 7x2 + 3
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3