Advertisements
Advertisements
प्रश्न
The polynomials ax3 + 3x2 – 3 and 2x3 – 5x + a, when divided by x – 4, leave the same remainder in each case. Find the value of a.
उत्तर
Let f(x) = ax3 + 3x2 – 3
When f(x) is divided by (x – 4), remainder = f(4)
f(4) = a(4)3 + 3(4)2 – 3 = 64a + 45
Let g(x) = 2x3 – 5x + a
When g(x) is divided by (x – 4), remainder = g(4)
g(4) = 2(4)3 – 5(4) + a = a + 108
It is given that f(4) = g(4)
64a + 45 = a + 108
63a = 63
a = 1
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Using the Remainder and Factor Theorem, factorise the following polynomial:
`x^3 + 10x^2 - 37x + 26`
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
Find the remainder when x4 + 1 is divided by x + 1.
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0
Find the number which should be added to x2 + x + 3 so that the resulting polynomial is completely divisible by (x + 3).
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
Find the remainder (without division) when 2x3 – 3x2 + 7x – 8 is divided by x – 1 (2000)