मराठी

By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1 - Mathematics

Advertisements
Advertisements

प्रश्न

By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1

बेरीज

उत्तर

Given, p(x) = 4x3 – 12x2 + 14x – 3 and g(x) = 2x – 1

Here, zero of g(x) is `1/2`.

When we divide p(x) by g(x) using remainder theorem, we get the remainder `p(1/2)`.

∴ `p(1/2) = 4(1/2)^3 - 12(1/2)^2 + 14(1/2) - 3`

= `4 xx 1/8 - 12 xx 1/4 + 14 xx 1/2 - 3`

= `1/2 - 3 + 7 - 3`

= `1/2 + 1`

= `(1 + 2)/2`

= `3/2`

Hence, remainder is `3/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.3 [पृष्ठ २०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 2 Polynomials
Exercise 2.3 | Q 14. (iii) | पृष्ठ २०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×