Advertisements
Advertisements
प्रश्न
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
उत्तर
According to the question,
g(x) = 2x + 1
Then, zero of g(x),
g(x) = 0
2x + 1 = 0
2x = –1
x = `-1/2`
Therefore, zero of g(x) = `-1/2`
So, substituting the value of x in p(x), we get,
`p(-1/2) = 2 xx (-1/2)^3 - 11 xx (-1/2)^2 - 4 xx (-1/2) + 5`
= `-1/4 - 11/4 + 7`
= `16/4`
= 4 ≠ 0
Hence, p(x) is not the multiple of g(x), the remainder ≠ 0.
APPEARS IN
संबंधित प्रश्न
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Find without division, the remainder in the following:
8x2 - 2x + 1 is divided by (2x+ 1)
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 3x3 – 7x2 + 4x + 11
Given f(x) = ax2 + bx + 2 and g(x) = bx2 + ax + 1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x) + g(x) + 4x2 + 7x.
When x3 – 3x2 + 5x – 7 is divided by x – 2,then the remainder is