Advertisements
Advertisements
प्रश्न
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
उत्तर
According to the question,
g(x) = x – 2,
Then, zero of g(x),
g(x) = 0
x – 2 = 0
x = 2
Therefore, zero of g(x) = 2
So, substituting the value of x in p(x), we get,
p(2) = (2)3 – 5(2)2 + 4(2) – 3
= 8 – 20 + 8 – 3
= –7 ≠ 0
Hence, p(x) is not the multiple of g(x), the remainder ≠ 0.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
The expression 2x3 + ax2 + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
Using the Remainder Theorem, factorise the following completely:
x3 + x2 – 4x – 4
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 5x2 – 1x + 4
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)
Using remainder theorem, find the value of a if the division of x3 + 5x2 – ax + 6 by (x – 1) leaves the remainder 2a.
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1