Advertisements
Advertisements
प्रश्न
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
उत्तर
f(x) = 4x3 + 7x2 – 36x – 63
For x = 3,
f(x) = f(3)
= 4(3)3 + 7(3)2 – 36(3) – 63
= 108 + 63 – 108 – 63
= 0
Hence, (x – 3) is a factor of f(x).
4x2 + 19x + 21
`x – 3")"overline(4x^3 + 7x^2 – 36x - 63)`
4x3 – 12x2
– +
19x2 – 36x – 63
19x2 – 57x
– +
21x – 63
21x – 63
– +
0
∴ 4x3 + 7x2 – 36x – 63 = (x – 3)(4x2 + 19x + 21)
= (x – 3)(4x2 + 12x + 7x + 21)
= (x – 3)[4x(x + 3) + 7(x + 3)]
= (x – 3)(4x + 7)(x + 3)
APPEARS IN
संबंधित प्रश्न
Check whether 7 + 3x is a factor of 3x3 + 7x.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by 2x + 1
When 2x3 – 9x2 + 10x – p is divided by (x + 1), the remainder is – 24.Find the value of p.
If x51 + 51 is divided by x + 1, the remainder is ______.
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.