Advertisements
Advertisements
प्रश्न
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
उत्तर
Let x + 3 = 0
⇒ x = -3
Substituting the value of x in f(x),
f(x) = 2x2 – 5x + 1
∴ f(-3) = 2(-3)2 - 5(-3) + 1
= 18 + 15 + 1
= 34.
Hence Reminder = 34.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
If x + 1 is a factor of 3x3 + kx2 + 7x + 4, then the value of k is
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x + 3
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3