Advertisements
Advertisements
प्रश्न
Find the values of a and b when the polynomial f(x)= ax3 + 3x2 +bx -3 is exactly divisible by (2x+3) and leaves a remainder -3 when divided by (x+2).
उत्तर
(2x +3) ⇒ x = `-3/2` .....(i)
(x + 2) ⇒ x = - 2 ...(ii)
putting (i) in polynomial , we get
`"f"(-3/2) = "a" xx (-3/2) xx (-3/2) xx (-3/2) + 3 xx (-3/2) xx (-3/2) + "b" xx (-3/2) - 3 = 0`
- 27 a + 54 - 12 b - 24 = 0
⇒ 27 a = -12 b + 30 ....(iii)
Putting (ii) in polynomial, and remainder is -3 we get
f(-2) = a × (-2) × (-2) × (-2) + 3 × (-2) × (-2) + b× (-2) - 3 = -3
b = 6 - 4a ..... (iv)
Combining (iii) and (iv), we get,
27a = -12 ×(6 - 4a) + 30
⇒ 27a= -72 + 48a + 30,
⇒ a=2, b= 6-4x2 = -2
a= 2, b= -2
APPEARS IN
संबंधित प्रश्न
Find the remainder when x4 – 3x2 + 2x + 1 is divided by x – 1.
Find the remainder when x3 + 3x2 – 12x + 4 is divided by x – 2.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 1
Find the values of m and n when the polynomial f(x)= x3 - 2x2 + m x +n has a factor (x+2) and leaves a remainder 9 when divided by (x+1).
What number should be added to polynomial f(x)= 12x3 + 16x2 - 5x - 8 so that the resulting polynomial is exactly divisible by (2x - 1) ?
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x – 2
By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: x4 + 1; x – 1
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.