Advertisements
Advertisements
प्रश्न
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
उत्तर
(x - 1) ⇒ x = l .... (i)
(x - 2) ⇒ x = 2 .... (ii)
Putting (i) in polynomial , we get
f(l) = 1× 1 × 1 - p × 1 × 1 + 14 × 1 - q = 0
⇒ p + q = 15
⇒ p = 15 - q
Putting (ii) in polynomial , we get
f(2) = 2 × 2 × 2 - p × 2 × 2 + 14 × 2 - q = 0
4p + q= 36, ⇒ q = 36 - 4p .... (iv)
Combining (iii) and (iv), we get,
p = 15 - (36 - 4p)
⇒ p= 15 - 36 + 4p
⇒ 3p = 21
q = 36 - 4 × 7 = 8
⇒ p = 7 , q = 8
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
When x3 + 3x2 – kx + 4 is divided by (x – 2), the remainder is k. Find the value of k.
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
If x51 + 51 is divided by x + 1, the remainder is ______.
If the polynomials az3 + 4z2 + 3z – 4 and z3 – 4z + a leave the same remainder when divided by z – 3, find the value of a.
The remainder, when x3 – x2 + x – 1 is divided by x + 1, is ______.