Advertisements
Advertisements
प्रश्न
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
उत्तर
x - 2 = 0 ⇒ x = 2 and remainder is 0
Substituting this value , we get :
f (2) = 2 × 2 × 2 + 3 × 2 × 2 - m × 2 + 4 = 0
⇒ 2m = 24
⇒ m = 12
APPEARS IN
संबंधित प्रश्न
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
If 2x + 1 is a factor of 2x2 + ax – 3, find the value of a.
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
If x – 3 is a factor of p(x), then the remainder is
If x – 2 is a factor of x3 – kx – 12, then the value of k is ______.
Factors of 4 + 4x – x2 – x3 are ______.
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.
If mx2 – nx + 8 has x – 2 as a factor, then ______.