Advertisements
Advertisements
प्रश्न
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
उत्तर
Let f(x) = 3x3 + 2x2 – 3x – 2
3x + 2 = 0 `\implies x = (-2)/3`
∴ Remainder = `f ((-2)/3)`
= `3((-2)/3)^3 + 2((-2)/3)^2 - 3((-2)/3) - 2`
= `(-8)/9 + 8/9 + 2 - 2`
= 0
Hence, (3x + 2) is a factor of f(x).
Now, we have:
x2 – 1
`3x + 2")"overline(3x^3 + 2x^2 - 3x - 2)`
3x3 + 2x2
– –
– 3x – 2
– 3x – 2
+ +
0
∴ 3x3 + 2x2 – 3x – 2 = (3x + 2)(x2 – 1)
= (3x + 2)(x + 1)(x – 1)
APPEARS IN
संबंधित प्रश्न
Show that x – 2 is a factor of 5x2 + 15x – 50.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
Find the value of the constants a and b, if (x – 2) and (x + 3) are both factors of the expression x3 + ax2 + bx – 12.
Determine whether (x – 1) is a factor of the following polynomials:
x4 + 5x2 – 5x + 1