Advertisements
Advertisements
प्रश्न
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
उत्तर
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
3x - 2 = 0 ⇒ x = `2/3`
Substituting this value, we get
`"f" (2/3) = 18 xx (2/3) xx (2/3) xx (2/3) - 3 xx (2/3) xx (2/3) + 6 xx (2/3) - 8`
`= 16/3 - 4/3 + 4 - 8`
`= 4 + 4 - 8`
= 0
Hence (3x - 2) Is a factor of 18x3 - 3x2 + 6x -8.
APPEARS IN
संबंधित प्रश्न
Find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k − 1)
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Show that m − 1 is a factor of m21 − 1 and m22 − 1.
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 - 3x2 + 4x - 4 and g(x) = x - 2
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
For what value of k is the polynomial p(x) = 2x3 – kx2 + 3x + 10 exactly divisible by (x – 2)
If both (x − 2) and `(x - 1/2)` is the factors of ax2 + 5x + b, then show that a = b
Factors of 4 + 4x – x2 – x3 are ______.