Advertisements
Advertisements
प्रश्न
Show that m − 1 is a factor of m21 − 1 and m22 − 1.
उत्तर
Let p(m) = m21 − 1 and q(m) = m22 − 1.
Divisor = m − 1
Now,
p(1) = (1)21 − 1
= 1 − 1
= 0
Therefore, by factor theorem (m − 1) is a factor of p(m) = m21 − 1.
Also,
q(1) = (1)22 − 1
= 1 − 1
= 0
Therefore, by factor theorem (m − 1) is a factor of q(m) = m22 − 1.
Hence, (m − 1) is a factor of m21 − 1 and m22 − 1.
APPEARS IN
संबंधित प्रश्न
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12.
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
Using the factor Theorem, show that:
2x + 7 is a factor 2x3 + 5x2 − 11x – 14. Hence, factorise the given expression completely.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
If (3x – 2) is a factor of 3x3 – kx2 + 21x – 10, find the value of k.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24
x – 1 is a factor of 8x2 – 7x + m; the value of m is ______.