Advertisements
Advertisements
प्रश्न
If ( x31 + 31) is divided by (x + 1) then find the remainder.
उत्तर
Let p(x) = x31 + 31.
Divisor = x + 1
∴ Let x = −1
By remainder theorem
Remainder = p(−1)
= (−1)31 + 31
= −1 + 31
= 30
Thus, the remainder when (x31 + 31) is divided by (x + 1) is 30.
APPEARS IN
संबंधित प्रश्न
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 1
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
Find ‘a‘ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leave the same remainder when divided by x + 3.
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
What number should be subtracted from the polynomial f(x)= 2x3 - 5x2 +8x -17 so that the resulting polynomial is exactly divisible by (2x - 5)?
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
The polynomial f(x) = ax4 + x3 + bx2 - 4x + c has (x + 1), (x-2) and (2x - 1) as its factors. Find the values of a,b,c, and remaining factor.
Find the remainder (without division) when 2x3 – 3x2 + 7x – 8 is divided by x – 1 (2000)
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by 2x + 1