Advertisements
Advertisements
Question
If ( x31 + 31) is divided by (x + 1) then find the remainder.
Solution
Let p(x) = x31 + 31.
Divisor = x + 1
∴ Let x = −1
By remainder theorem
Remainder = p(−1)
= (−1)31 + 31
= −1 + 31
= 30
Thus, the remainder when (x31 + 31) is divided by (x + 1) is 30.
APPEARS IN
RELATED QUESTIONS
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
The polynomial f(x) = ax4 + x3 + bx2 - 4x + c has (x + 1), (x-2) and (2x - 1) as its factors. Find the values of a,b,c, and remaining factor.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
(x – 2) is a factor of the expression x3 + ax2 + bx + 6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b.
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x – 2
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
What must be subtracted from the polynomial x3 + x2 – 2x + 1, so that the result is exactly divisible by (x – 3)?