Advertisements
Advertisements
Question
(x – 2) is a factor of the expression x3 + ax2 + bx + 6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b.
Solution
As x – 2 is a factor of
f(x) = x3 + ax2 + bx + 6
∴ f(2) = 0
∴ (2)3 + a(2)2 + b(2) + 6 = 0
⇒ 8 + 4a + 2b + 6 = 0
⇒ 4a + 2b = –14
⇒ 2a + b = –7 ....(i)
as on dividing f(x) by x – 3
remainder = 3
∴ f(3) = 3
∴ (3)3 + a(3)2 + b(3) + 6 = 3
⇒ 27 + 9a + 3b + 6 = 3
⇒ 9a + 3b = –30
⇒ 3a + b = –10 ....(ii)
Solving simultaneously equation (i) and (ii),
∴ 2a + b = –7
3a + b – 10
Subtracting – – +
–a = 3
a = –3
Subtracting value of a in equation (i)
2(–3) + b = –7
∴ –6 + b = –7
∴ b = –1
∴ a = –3, b = –1.
APPEARS IN
RELATED QUESTIONS
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0
Find the value of ‘m’, if mx3 + 2x2 – 3 and x2 – mx + 4 leave the same remainder when each is divided by x – 2.
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 3x3 + 7x2 – 5x + 1
Using remainder theorem, find the value of a if the division of x3 + 5x2 – ax + 6 by (x – 1) leaves the remainder 2a.
Find the remainder when 3x3 – 4x2 + 7x – 5 is divided by (x + 3)
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]