English

Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0 - Mathematics

Advertisements
Advertisements

Question

Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0

Sum

Solution

Let f(x) = 3x3 + 10x2 + x – 6 

For x = –1, 

f(x) = f(–1)

= 3(–1)3 + 10(–1)2 + (–1) – 6

= –3 + 10 – 1 – 6

= 0

Hence, (x + 1) is a factor of f(x). 

            3x2 + 7x – 6
`x + 1")"overline(3x^3 + 10x^2 + x - 6)`
           3x3 + 3x2                   
           –     –                         
                     7x2 + x
                     7x2 + 7x           
                     –     –               
                            – 6x – 6
                            – 6x – 6      
                            +     +       
                                   0        

∴ 3x3 + 10x2 + x – 6 = (x + 1)(3x2 + 7x – 6) 

= (x + 1)(3x2 + 9x – 2x – 6)

= (x + 1)[3x(x + 3) – 2(x + 3)] 

= (x + 1)(x + 3)(3x – 2) 

Now, 3x3 + 10x2 + x – 6 = 0 

(x + 1)(x + 3)(3x – 2) = 0 

`x = -1, -3, 2/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (B) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (B) | Q 3 | Page 112

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×