Advertisements
Advertisements
Question
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0
Solution
Let f(x) = 3x3 + 10x2 + x – 6
For x = –1,
f(x) = f(–1)
= 3(–1)3 + 10(–1)2 + (–1) – 6
= –3 + 10 – 1 – 6
= 0
Hence, (x + 1) is a factor of f(x).
3x2 + 7x – 6
`x + 1")"overline(3x^3 + 10x^2 + x - 6)`
3x3 + 3x2
– –
7x2 + x
7x2 + 7x
– –
– 6x – 6
– 6x – 6
+ +
0
∴ 3x3 + 10x2 + x – 6 = (x + 1)(3x2 + 7x – 6)
= (x + 1)(3x2 + 9x – 2x – 6)
= (x + 1)[3x(x + 3) – 2(x + 3)]
= (x + 1)(x + 3)(3x – 2)
Now, 3x3 + 10x2 + x – 6 = 0
(x + 1)(x + 3)(3x – 2) = 0
`x = -1, -3, 2/3`
APPEARS IN
RELATED QUESTIONS
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.