Advertisements
Advertisements
Question
Factorise the expression f(x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
Solution
f(x) = 2x3 – 7x2 – 3x + 18
For x = 2,
f(x) = f(2)
= 2(2)3 – 7(2)2 – 3(2) + 18
= 16 – 28 – 6 + 18
= 0
Hence, (x – 2) is a factor of f(x).
2x2 – 3x – 9
`x - 2")"overline(2x^3 - 7x^2 - 3x + 18)`
2x3 – 4x2
– +
– 3x2 – 3x
– 3x2 + 6x
+ –
– 9x + 18
– 9x + 18
+ –
0
∴ 2x3 – 7x2 – 3x + 18 = (x – 2)(2x2 – 3x – 9)
= (x – 2)(2x2 – 6x + 3x – 9)
= (x – 2)[2x(x – 3) + 3(x – 3)]
= (x – 2)(x – 3)(2x + 3)
Now, f(x) = 0
⇒ 2x3 – 7x2 – 3x + 18 = 0
⇒ (x – 2)(x – 3)(2x + 3) = 0
⇒ `x = 2, 3, (-3)/2`
APPEARS IN
RELATED QUESTIONS
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.
Factorise x3 + 6x2 + 11x + 6 completely using factor theorem.
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x2 - 3x + 5a
Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.
If (x + 3) and (x – 4) are factors of x3 + ax2 – bx + 24, find the values of a and b: With these values of a and b, factorise the given expression.
The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.