Advertisements
Advertisements
Question
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
Solution
f(x) = 2x3 + 7x2 + 2x – 3
`f(-1/2) = 2(-1/2)^3 + 7(-1/2)^2 + 2(-1/2) - 3 ≠ 0`
∴ (2x + 1) is not a factor of f(x).
`f(1/2) = 2(1/2)^3 + 7(1/2)^2 + 2(1/2) - 3 = 0`
∴ (2x – 1) is a factor of f(x)
x2 + 4x + 3
`2x - 1")"overline(2x^3 + 7x^2 + 2x - 3)`
2x3 – x2
8x2 + 2x
8x2 – 4x
6x – 3
6x – 3
xx
f(x) = (2x – 1)(x2 + 4x + 3)
f(x) = (2x – 1)(x + 3)(x + 1)
APPEARS IN
RELATED QUESTIONS
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
Factorise the expression f(x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x3 + ax2 - 2x + a + 4
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
(x – 2) is a factor of ______.