English

Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression. - Mathematics

Advertisements
Advertisements

Question

Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.

Sum

Solution

Let f(x) = x3 – 7x2 + 14x – 8

f(1) = (1)3 – 7(1)2 + 14(1) – 8

= 1 – 7 + 14 – 8

= 0 

Hence, (x – 1) is a factor of f(x). 

             x2 – 6x + 8
`x - 1")"overline(x^3 - 7x^2 + 14 - 8)`
           x3 – x2                     
               – 6x2 + 14x
               – 6x2 + 6x            
                            8x – 8
                            8x – 8      
                                0

∴ x3 – 7x2 + 14x – 8 = (x – 1)(x2 – 6x + 8)

= (x – 1)(x2 – 2x – 4x + 8)

= (x – 1)[x(x – 2) – 4(x – 2)]

= (x – 1)(x – 2)(x – 4)

shaalaa.com
Factorising a Polynomial Completely After Obtaining One Factor by Factor Theorem
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (C) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (C) | Q 1 | Page 112
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×