Advertisements
Advertisements
Question
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x2 - 3x + 5a
Solution
Let p(x) = x2 - 3x + 5a ...(i)
Since, (x - 2) is a factor of p(x), so p(2) = 0 ...(by factor theorem)
Put x = 2 in equation (i), we get
p(2) = (2)2 - 3 x 2 + 5a
= 4 - 6 + 5a
= 5a - 2
But p(2) = 0
⇒ 5a -2 = 0
⇒ 5a = 2
⇒ a =
APPEARS IN
RELATED QUESTIONS
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
Find the values of a and b in the polynomial f(x) = 2x3 + ax2 + bx + 10, if it is exactly divisible by (x+2) and (2x-1).
If the polynomials ax3 + 4x2 + 3x - 4 and x3 - 4x + a leave the same remainder when divided by (x - 3), find the value of a.
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
If (x + 3) and (x – 4) are factors of x3 + ax2 – bx + 24, find the values of a and b: With these values of a and b, factorise the given expression.
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.