Advertisements
Advertisements
Question
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
Solution
Let p(x) = x6 - ax5 + x4 - ax3 + 3a + 2 ...(i)
Put x = a in equation (i) we get
p(a) = (a)6 - a(a)5 + (a)4 - a(a)3 + 3(a) + 2
= a6 - a6 + a4 - a4 + 3a + 2 = 0
∴ 3a = -2
∴ a = `(-2)/(3)`.
APPEARS IN
RELATED QUESTIONS
Factorise the expression f(x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x).
The polynomial px3 + 4x2 – 3x + q is completely divisible by x2 – 1; find the values of p and q. Also, for these values of p and q, factorize the given polynomial completely.
Using remainder Theorem, factorise:
2x3 + 7x2 − 8x – 28 Completely
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x5 - a2x3 + 2x + a + 1.
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x3 + 2ax2 + ax - 1
If x3 – 2x2 + px + q has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.
One factor of x3 – kx2 + 11x – 6 is x – 1. The value of k is ______.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.