English

Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x). - Mathematics

Advertisements
Advertisements

Question

Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x).

Sum

Solution

f(x)= x3 + 3x2 + ax + b

Since, (x – 2) is a factor of f(x), f(2) = 0 

`\implies` (2)3 + 3(2)2 + a(2) + b = 0 

`\implies` 8 + 12 + 2a + b = 0 

`\implies` 2a + b + 20 = 0  ...(i) 

Since, (x + 1) is a factor of f(x), f(–1) = 0 

`\implies` (–1)3 + 3(–1)2 + a(–1) + b = 0 

`\implies` –1 + 3 – a + b = 0

`\implies` –a + b + 2 = 0   ...(ii) 

Subtracting (ii) from (i), we get, 

3a + 18 = 0 

 ⇒ a = – 6 

Substituting the value of a in (ii), we get, 

b = a – 2

= – 6 – 2

= – 8  

∴ f(x) = x3 + 3x2 – 6x – 8 

Now, for x = –1, 

f(x) = f(–1)

= (–1)3 + 3(–1)2 – 6(–1) – 8

= –1 + 3 + 6 – 8

= 0 

Hence, (x + 1) is a factor of f(x).

            x2 + 2x – 8
`x + 1")"overline(x^3 + 3x^2 - 6x - 8)`
          x3 + x2                     
                 2x2 – 6x
                 2x2 + 2x            
                        – 8x – 8      
                        – 8x – 8      
                               0         

∴ x3 + 3x2 – 6x – 8 = (x + 1)(x2 + 2x – 8) 

= (x + 1)(x2 + 4x – 2x – 8)

= (x + 1)[x(x + 4) – 2(x + 4)] 

= (x + 1)(x + 4)(x – 2)

shaalaa.com
Factorising a Polynomial Completely After Obtaining One Factor by Factor Theorem
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (B) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (B) | Q 5 | Page 112
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×