Advertisements
Advertisements
Question
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Solution
Let the number to be subtracted from the given polynomial be k.
Let f(y) = 3y3 + y2 – 22y + 15 – k
It is given that f(y) is divisible by (y + 3).
∴ Remainder = f(–3) = 0
3(–3)3 + (–3)2 – 22(–3) + 15 – k = 0
– 81 + 9 + 66 + 15 – k = 0
9 – k = 0
k = 9
APPEARS IN
RELATED QUESTIONS
Using remainder Theorem, factorise:
2x3 + 7x2 − 8x – 28 Completely
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
Using the factor theorem, show that (x - 2) is a factor of `x^3 + x^2 -4x -4 .`
Hence factorise the polynomial completely.
Find the values of a and b in the polynomial f(x) = 2x3 + ax2 + bx + 10, if it is exactly divisible by (x+2) and (2x-1).
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x3 + ax2 - 2x + a + 4
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x3 + 2ax2 + ax - 1
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
Use factor theorem to factorise the following polynomials completely: 4x3 + 4x2 – 9x – 9
One factor of x3 – kx2 + 11x – 6 is x – 1. The value of k is ______.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.