Advertisements
Advertisements
Question
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
Solution
(i) Let x – 2 = 0,
then x = 2
Now f(x) = 2x3 – x2 + px – 2
∴ f(2) = 2(2)3 – (2)2 + p x 2 – 2
= 2 x 8 – 4 + 2p – 2
= 16 – 4 + 2p – 2
= 10 + 2p
(ii) ∴ f(2) = 0,
then 10 + 2p = 0
⇒ 2p = –10
⇒ p = –5
Now, the polynomial will be
2x3 – x2 – 5x – 2
= (x – 2)(2x2 + 3x + 1)
= ( x – 2)[2x2 + 2x + x + 1]
= (x – 2)[2x(x + 1) + 1(x + 1)]
= (x – 2)(x + 1)(2x + 1)
`x – 2")"overline(2x^3 – x^2 – 5x – 2)("2x^2 + 3x + 1`
2x3 – 4x2
– +
3x2 – 5x
3x2 – 6x
– +
x – 2
x – 2
– +
x
APPEARS IN
RELATED QUESTIONS
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
Find the values of a and b in the polynomial f(x) = 2x3 + ax2 + bx + 10, if it is exactly divisible by (x+2) and (2x-1).
Find the value of a and b so that the polynomial x3 - ax2 - 13x + b has (x - 1) (x + 3) as factor.
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.
If x3 – 2x2 + px + q has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.
f 2x3 + ax2 – 11x + b leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.