Advertisements
Advertisements
प्रश्न
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
उत्तर
(i) Let x – 2 = 0,
then x = 2
Now f(x) = 2x3 – x2 + px – 2
∴ f(2) = 2(2)3 – (2)2 + p x 2 – 2
= 2 x 8 – 4 + 2p – 2
= 16 – 4 + 2p – 2
= 10 + 2p
(ii) ∴ f(2) = 0,
then 10 + 2p = 0
⇒ 2p = –10
⇒ p = –5
Now, the polynomial will be
2x3 – x2 – 5x – 2
= (x – 2)(2x2 + 3x + 1)
= ( x – 2)[2x2 + 2x + x + 1]
= (x – 2)[2x(x + 1) + 1(x + 1)]
= (x – 2)(x + 1)(2x + 1)
`x – 2")"overline(2x^3 – x^2 – 5x – 2)("2x^2 + 3x + 1`
2x3 – 4x2
– +
3x2 – 5x
3x2 – 6x
– +
x – 2
x – 2
– +
x
APPEARS IN
संबंधित प्रश्न
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
Factorise the expression f(x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x).
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Find the values of a and b in the polynomial f(x) = 2x3 + ax2 + bx + 10, if it is exactly divisible by (x+2) and (2x-1).
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
Use factor theorem to factorise the following polynomials completely: 4x3 + 4x2 – 9x – 9
f 2x3 + ax2 – 11x + b leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.