Advertisements
Advertisements
प्रश्न
Factorise the expression f(x) = 2x3 – 7x2 – 3x + 18. Hence, find all possible values of x for which f(x) = 0.
उत्तर
f(x) = 2x3 – 7x2 – 3x + 18
For x = 2,
f(x) = f(2)
= 2(2)3 – 7(2)2 – 3(2) + 18
= 16 – 28 – 6 + 18
= 0
Hence, (x – 2) is a factor of f(x).
2x2 – 3x – 9
`x - 2")"overline(2x^3 - 7x^2 - 3x + 18)`
2x3 – 4x2
– +
– 3x2 – 3x
– 3x2 + 6x
+ –
– 9x + 18
– 9x + 18
+ –
0
∴ 2x3 – 7x2 – 3x + 18 = (x – 2)(2x2 – 3x – 9)
= (x – 2)(2x2 – 6x + 3x – 9)
= (x – 2)[2x(x – 3) + 3(x – 3)]
= (x – 2)(x – 3)(2x + 3)
Now, f(x) = 0
⇒ 2x3 – 7x2 – 3x + 18 = 0
⇒ (x – 2)(x – 3)(2x + 3) = 0
⇒ `x = 2, 3, (-3)/2`
APPEARS IN
संबंधित प्रश्न
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
If x3 – 2x2 + px + q has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.