Advertisements
Advertisements
प्रश्न
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
उत्तर
If (x – 3) divides f(x) = x3 – px2 + x + 6, then
Remainder = f(3) = 33 – p(3)2 + 3 + 6 = 36 – 9p
If (x−3) divides g(x) = 2x3 – x2 − (p + 3)x – 6, then
Remainder = g(3) = 3(3)3 – 32 − (p + 3)(3) – 6 = 30 - 3p
Now f(3) = g(3)
⇒ 36 – 9p = 30 − 3p
⇒ −6p = −6
⇒ p = 1
APPEARS IN
संबंधित प्रश्न
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
If the polynomials ax3 + 4x2 + 3x - 4 and x3 - 4x + a leave the same remainder when divided by (x - 3), find the value of a.
Use factor theorem to factorise the following polynomials completely: 4x3 + 4x2 – 9x – 9
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.
(x – 2) is a factor of ______.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.