Advertisements
Advertisements
Question
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Solution
If (x – 3) divides f(x) = x3 – px2 + x + 6, then
Remainder = f(3) = 33 – p(3)2 + 3 + 6 = 36 – 9p
If (x−3) divides g(x) = 2x3 – x2 − (p + 3)x – 6, then
Remainder = g(3) = 3(3)3 – 32 − (p + 3)(3) – 6 = 30 - 3p
Now f(3) = g(3)
⇒ 36 – 9p = 30 − 3p
⇒ −6p = −6
⇒ p = 1
APPEARS IN
RELATED QUESTIONS
Given that x – 2 and x + 1 are factors of f(x) = x3 + 3x2 + ax + b; calculate the values of a and b. Hence, find all the factors of f(x).
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
The polynomial px3 + 4x2 – 3x + q is completely divisible by x2 – 1; find the values of p and q. Also, for these values of p and q, factorize the given polynomial completely.
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x2 - 3x + 5a
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x5 - 3x4 - ax3 + 3ax2 + 2ax + 4.
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
Use factor theorem to factorise the following polynomials completely: 4x3 + 4x2 – 9x – 9
Factorize completely using factor theorem:
2x3 – x2 – 13x – 6
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x – 3.
- Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
- Give a valid reason for your answer.
Also, factorize the given polynomial completely.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.