हिंदी

Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely. - Mathematics

Advertisements
Advertisements

प्रश्न

Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.

योग

उत्तर

By remainder theorem, 

For x = 1, the value of the given expression is the remainder. 

x3 + 10x2 – 37x + 26

= (1)3 + 10(1)2 – 37(1) + 26

= 1 + 10 – 37 + 26

= 37 – 37

= 0

x – 1 is a factor of x3 + 10x2 – 37x + 26.

            x2 + 11x – 26
x-1)x3+10x2-37x+26¯
           x3 – x2                           
                    11x2 – 37x
                    11x2 – 11x            
                             – 26x + 26
                             – 26x + 26    
                                     0

∴ x3 + 10x2 – 37x + 26

= (x – 1)(x2 + 11x – 26)

= (x – 1)(x2 + 13x – 2x – 26)

= (x – 1)[x(x + 13) – 2(x + 13)]

= (x – 1)(x + 13)(x – 2)

∴ x3 + 10x2 – 37 + 26 = (x – 1)(x + 13)(x – 2)

shaalaa.com
Factorising a Polynomial Completely After Obtaining One Factor by Factor Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Remainder and Factor Theorems - Exercise 8 (C) [पृष्ठ ११२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 8 Remainder and Factor Theorems
Exercise 8 (C) | Q 2 | पृष्ठ ११२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.