Advertisements
Advertisements
प्रश्न
When x3 + 3x2 – mx + 4 is divided by x – 2, the remainder is m + 3. Find the value of m.
उत्तर
Let f(x) = x3 + 3x2 – mx + 4
According to the given information,
f(2) = m + 3
(2)3 + 3(2)2 – m(2) + 4 = m + 3
8 + 12 – 2m + 4 = m + 3
24 – 3 = m + 2m
3m = 21
m = 7
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
If ( x31 + 31) is divided by (x + 1) then find the remainder.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x - 4
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 3x3 – 7x2 + 4x + 11
Using the Remainder Theorem, factorise completely the following polynomial:
3x2 + 2x2 – 19x + 6
Given f(x) = ax2 + bx + 2 and g(x) = bx2 + ax + 1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x) + g(x) + 4x2 + 7x.
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2