Advertisements
Advertisements
प्रश्न
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
उत्तर
p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
Let g(x) = 2x – 1
2x – 1 = 0
2x = 1
∴ x = `1/2`
`"p"(1/2) = 4(1/2)^3 - 12(1/2)^2 + 14(1/2) - 3`
= `4 xx 1/8 - 12 xx 1/4 + 7 - 3`
= `1/2 - 3 + 4`
= `(1 - 6 + 8)/2`
= `3/2`
∴ Remainder = `3/2`.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x+1.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
Find the number which should be added to x2 + x + 3 so that the resulting polynomial is completely divisible by (x + 3).
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(2x3 − 2x2 + ax − a) ; (x − a)
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
When x3 + 3x2 – kx + 4 is divided by (x – 2), the remainder is k. Find the value of k.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Given f(x) = ax2 + bx + 2 and g(x) = bx2 + ax + 1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x) + g(x) + 4x2 + 7x.
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]