Advertisements
Advertisements
प्रश्न
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]
उत्तर
Let p(x) = 2x4 – 5x3 + 2x2 – x + 2 firstly, factorise x2 – 3x + 2.
Now, x2 – 3x + 2 = x2 – 2x – x + 2 ...[By splitting middle term]
= x(x – 2) – 1(x – 2) = (x – 1)(x – 2)
Hence, 0 of x2 – 3x + 2 are 1 and 2.
We have to prove that, 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2 i.e., to prove that p(1) = 0 and p(2) = 0
Now, p(1) = 2(1)4 – 5(1)3 + 2(1)2 – 1 + 2
= 2 – 5 + 2 – 1 + 2
= 6 – 6
= 0
And p(2) = 2(2)4 – 5(2)3 + 2(2)2 – 2 + 2
= 2x16 – 5x8 + 2x4 + 0
= 32 – 40 + 8
= 40 – 40
= 0
Hence, p(x) is divisible by x2 – 3x + 2.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
Find the values of m and n when the polynomial f(x)= x3 - 2x2 + m x +n has a factor (x+2) and leaves a remainder 9 when divided by (x+1).
Find the value of p if the division of px3 + 9x2 + 4x - 10 by (x + 3) leaves the remainder 5.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
What number must be subtracted from 2x2 – 5x so that the resulting polynomial leaves the remainder 2, when divided by 2x + 1 ?
If x51 + 51 is divided by x + 1, then the remainder is
If x51 + 51 is divided by x + 1, the remainder is ______.
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2