Advertisements
Advertisements
प्रश्न
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
उत्तर
Let f(x) = 2x3 + x2 – 13x + 6
For x = 2
Factors of constant term 6 are ±1, ±2, ±3, ±6.
Putting x = 2, we have:
f(x) = f(2)
= 2(2)3 + (2)2 – 13(2) + 6
= 16 + 4 – 26 + 6
= 0
Hence, (x – 2) is a factor of f(x).
2x2 + 5x – 3
`x - 2")"overline(2x^3 + x^2 - 13x + 6)`
2x3 – 4x2
– +
5x2 – 13x
5x2 – 10x
– +
– 3x + 6
– 3x + 6
+ –
0
∴ 2x3 + x2 – 13x + 6 = (x – 2)(2x2 + 5x – 3)
= (x – 2)(2x2 + 6x – x – 3)
= (x – 2)[2x(x + 3) – 1(x + 3)]
= (x – 2)(x + 3)(2x – 1)
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 1
If x3 + ax2 + bx + 6 has x – 2 as a factor and leaves a remainder 3 when divided by x – 3, find the values of a and b.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
What number should be subtracted from the polynomial f(x)= 2x3 - 5x2 +8x -17 so that the resulting polynomial is exactly divisible by (2x - 5)?
If x51 + 51 is divided by x + 1, the remainder is ______.
By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: x4 + 1; x – 1