English

Using the Remainder Theorem, factorise the following completely: 2x3 + x2 – 13x + 6 - Mathematics

Advertisements
Advertisements

Question

Using the Remainder Theorem, factorise the following completely:

2x3 + x2 – 13x + 6 

Sum

Solution

Let f(x) = 2x3 + x2 – 13x + 6  

For x = 2 

Factors of constant term 6 are ±1, ±2, ±3, ±6.

Putting x = 2, we have:

f(x) = f(2)

= 2(2)3 + (2)2 – 13(2) + 6

= 16 + 4 – 26 + 6

= 0 

Hence, (x – 2) is a factor of f(x).

             2x2 + 5x – 3
`x - 2")"overline(2x^3 + x^2 - 13x + 6)`
           2x3 – 4x2                              
            –   +                             
                    5x2 – 13x
                    5x2 – 10x               
                    –    +                
                          – 3x + 6
                          – 3x + 6        
                          +     –        
                                0         

∴ 2x3 + x2 – 13x + 6 = (x – 2)(2x2 + 5x – 3)

= (x – 2)(2x2 + 6x – x – 3) 

= (x – 2)[2x(x + 3) – 1(x + 3)]

= (x – 2)(x + 3)(2x – 1)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (C) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (C) | Q 14 | Page 112

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×