Advertisements
Advertisements
Question
Using remainder theorem, find the value of k if on dividing 2x3 + 3x2 – kx + 5 by x – 2, leaves a remainder 7.
Solution
Let f(x) = 2x3 + 3x2 – kx + 5
Using remainder theorem,
f(2) = 7
∴ 2(2)3 + 3(2)2 – k(2) + 5 = 7
`\implies` 2(8) + 3(4) – k(2) + 5 = 7
`\implies` 16 + 12 – 2k + 5 = 7
`\implies` 2k = 16 + 12 + 5 – 7
`\implies` 2k = 26
`\implies` k = 13
RELATED QUESTIONS
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 1
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
What number should be added to polynomial f(x)= 12x3 + 16x2 - 5x - 8 so that the resulting polynomial is exactly divisible by (2x - 1) ?
(x – 2) is a factor of the expression x3 + ax2 + bx + 6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b.
When x3 – 3x2 + 5x – 7 is divided by x – 2,then the remainder is
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
If x3 + 6x2 + kx + 6 is exactly divisible by (x + 2), then k = ?
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2