Advertisements
Advertisements
Question
When x3 – 3x2 + 5x – 7 is divided by x – 2,then the remainder is
Options
0
1
2
– 1
Solution
f(x) = x3 – 3x2 + 5x – 7
g(x) = x – 2, if x – 2 = 0, then x = 2
Remainder will be
∴ f(2) = (2)3 – 3(2)3 + 5 x 2 – 7
= 8 – 12 + 10 – 7
= 18 – 19
= –1
∴ Remainder = –1.
APPEARS IN
RELATED QUESTIONS
Find the remainder when x4 + 1 is divided by x + 1.
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
The polynomial f(x) = ax4 + x3 + bx2 - 4x + c has (x + 1), (x-2) and (2x - 1) as its factors. Find the values of a,b,c, and remaining factor.
(x – 2) is a factor of the expression x3 + ax2 + bx + 6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b.
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).
If x51 + 51 is divided by x + 1, then the remainder is
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
If x25 + x24 is divided by (x + 1), the result is ______.